If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x=31
We move all terms to the left:
x^2+14x-(31)=0
a = 1; b = 14; c = -31;
Δ = b2-4ac
Δ = 142-4·1·(-31)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-8\sqrt{5}}{2*1}=\frac{-14-8\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+8\sqrt{5}}{2*1}=\frac{-14+8\sqrt{5}}{2} $
| 3x+8-4x-2=118 | | 5x-1+7x-5=78 | | 4x-29=3x+9 | | 8x+15=305 | | 18x+13=319 | | 7x+19=9x-21 | | (3x34)+1=102+1 | | (1/4)a-3=1024 | | 2x+6+60=360 | | 1.25+x^2=1.5 | | 2(12x24+16x12+24x16=) | | 7x+2+8+4x+7=180 | | 12+0.15x=29+0.11x | | 18x+12=90 | | -3x+1=26 | | 11-h=11 | | 5=y4 | | 4(x-3)=2+3(x-1) | | 11y=13-90 | | 14x124=1736 | | 8-5m=3m | | 3x-8=2(x+5) | | 3(2x-4)+x=-3x+14-6 | | 2.5(3x-2)=32.5 | | X+0.08x=400 | | 4.2x-6=17.1 | | 3k^2-34k+11=0 | | 2u^2+90u=0 | | 11m^2-34m+3=0 | | 41u^2+7u=0 | | 11=x*1.25 | | 25x+2=15x-12 |